翻訳と辞書 |
axiom of empty set : ウィキペディア英語版 | axiom of empty set
In axiomatic set theory, the axiom of empty set is an axiom of Kripke–Platek set theory and the variant of general set theory that Burgess (2005) calls "ST," and a demonstrable truth in Zermelo set theory and Zermelo–Fraenkel set theory, with or without the axiom of choice. == Formal statement == In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: : or in words: :There is a set such that no set is a member of it.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「axiom of empty set」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|